标题 | 《基本不等式》说课稿 |
范文 | 《基本不等式》说课稿(精选18篇) 作为一名教师,时常要开展说课稿准备工作,说课稿是进行说课准备的文稿,有着至关重要的作用。我们应该怎么写说课稿呢?下面是小编精心整理的《基本不等式》说课稿,欢迎阅读与收藏。 《基本不等式》说课稿 1 一、教材分析 ◆本节教材的地位和作用 ◆教学目标 ◆教学重点、难点 1、本节教材的地位和作用 "基本不等式" 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完"不等式的性质"、"不等式的解法"及"线性规划"的基础上对不等式的进一步研究。在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。 2、 教学目标 (1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。 (2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。 (3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。 3、教学重点、难点 根据课程标准制定如下的教学重点、难点 重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。 难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。 二、教法说明 本节课借助几何画板,使用多媒体辅助进行直观演示。采用启发式教学法创设问题情景,激发学生开始尝试活动。运用生活中的实际例子,让学生享受解决实际问题的乐趣。 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。 三、学法指导 为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。 四、教学设计 ◆运用2002年国际数学家大会会标引入 ◆运用分析法证明基本不等式 ◆不等式的几何解释 ◆基本不等式的应用 1、运用2002年国际数学家大会会标引入 如图,这是在北京召开的第24届国际数学家大会会标。会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车) 正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_____ 从图形中易得,s≥s’,即 问题1:它们有相等的情况吗?何时相等? 问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解) 一般地,对于任意实数a、b,我们有 当且仅当(重点强调)a=b时,等号成立(合情推理) 问题3:你能给出它的证明吗?(让学生独立证明) 设计意图 (1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的'历史悠久,感受数学与生活的联系。 (2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。 (3)三个思考题为学生创造情景,逐层深入,强化理解。 2、运用分析法证明基本不等式 如果 a>0,b>0 , 用 和 分别代替a,b.可以得到 也可写成 (强调基本不等式成立的前提条件"正")(演绎推理) 问题4:你能用不等式的性质直接推导吗? 要证 ① 只要证 ② 要证② ,只要证 ③ 要证③ ,只要证 ④ 显然, ④是成立的。当且仅当a=b时, 不等式中的等号成立。 (强调基本不等式取等的条件"等") 设计意图 (1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神; (2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解; (3)此种证明方法是"分析法",在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。 问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解) 设计意图 几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。 4、基本不等式的应用 例1.证明 (学生自己证明) 设计意图 (1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习"分析法"证明不等式的过程; (2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式; (3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。 例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小? (2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大? (让学生分组合作、探究完成) 设计意图 (1)此题目利用基本不等式求最值,包含正用,逆用,体现了基本不等式的应用价值; (2)强调利用不等式求最值的关键点:"正""定""等"; (3)有利于培养学生团结合作的精神。 练习 :(1)若a,b同号,则 (2)P113 练习1.2 设计意图 巩固基本不等式,让学生熟悉公式,并学会应用。 小结:(让学生畅所欲言) 设计意图 有利于发挥学生的主观能动性,突出学生的主体地位。 作业: 必做题:P 113 A组3、4 选做题: 设计意图 (1)必做题是让学生巩固所学知识,熟练公式应用,强化学生基础知识、基本技能的形成; (2)选做题达到分层教学的目的,根据学生的实际情况,对他们进行素质教育。 时间安排:引入约5分钟 证明基本不等式约10分钟 几何意义约10分钟 知识应用约15分钟 小结约5分钟 五、板书设计 分析法证明 几何解释 例题讲解 小结 作业 例2 以上是我对这节课的教学设计,恳请各位评委老师指导,谢谢! 《基本不等式》说课稿 2 一、说教材 1、地位和作用 本节课是建立在学生已经具备了一元一次方程、一元一次不等式及二元一次方程组知识的基础上,用函数的观点对它们重新进行分析。这不是简单的复习回顾,而是站在更高的角度进行动态的分析,引导学生从整体中把握部分。其中渗透了数形结合的思想,为后继学习奠定了基础。 2、教学目标 知识与技能目标: (1)通过函数图象,逐步体会一次函数与一元一次不等式的内在联系,培养学生数形结合的思想。 (2)感知不等式、函数、方程的不同作用与内在联系。 过程与方法目标: 让学生自己根据题意列函数关系式,作出函数图象,并能把函数关系式或函数图象与一元一次不等式联系起来,通过自主交流合作解决问题,充分发挥学生的主体作用。 情感与态度目标:让学生唱主角,老师任导演,增强学生学数学、用数学、探索数学奥秘的愿望,体验成功的喜悦。 3、教学重点、难点 教学重点:理解一次函数与一元一次不等式的关系; 教学难点:利用函数图象确定一元一次不等式的解集。 二、说教法 1、学情分析 我现在所带班级学生整体学习能力处于中等水平,学习新的知识需要较长的理解过程,加上这一学段的学生思维处于由具体形象向抽象概括过渡的时期,对事物的认知停留在单一知识点上。他们可能会画一次函数的图像、会解一元一次不等式,但是很难将数与形结合起来,通过抽象归纳得出二者的内在联系。 2、教学方法 鉴于以上对教材和学情的`分析,本节我将采用以启发探究式为主线、讲练结合的教学方法。在教学过程中,配合使用多媒体辅助教学,直观呈现教学素材,从而更好地激发学生的学习兴趣,提高教学效率。 三、说学法 1.学生自主探索交流,思考问题,获取知识,真正成为学习的主体。 2.学生在小组学习中形成合作交流的良好氛围,体验学习的快乐,更好地掌握知识,发展技能。 四、说教学程序 (一)创设问题情境,探究新知 兴趣是最好的老师。为了引起学生的兴趣,本节课我通过游戏引入。 游戏规则:准备好写有各种有理数的卡片若干张,每人每次从中抽取一张,用卡片上的数字乘以2再减去4,最后结果大于零的得1分,等于零的不得分,小于零的扣1分。10次以后,计算每人的得分总和,得分最高者获胜。 教师提问: 你希望抽到写有哪些数字的卡片?你希望哪些卡片被对方抽走? 在以上游戏中,若用x表示卡片上的数字,y表示计算的结果,你能写出y关于x的函数关系式吗? 设计游戏的目的有以下几点: (1)游戏的内容便于学生列出函数关系式y=2x-4; (2)通过游戏中得分、不得分、扣分规则的确定来建立函数与方程、函数与不等式的关系,既有对上节课内容的复习巩固,又为本节课的引入创设条件。 (二)探讨归纳,讲解新知 (1)解不等式2x-4>0 (2)观察函数y=2x-4图象,当自变量x为何值时,函数值大于0? 这一环节中,师生共同完成3个任务:教会学生看图、建立数形关系、归纳总结图像法解不等式的步骤。 所以,首先让学生画出引例中函数y=2x-4的图像。从y=0入手,然后分组讨论图像上y>0和y0的部分染色。通过观察让学生发现图像上y>0的部分也就是x轴上方的部分。相应地,y0时相应的x的值。 通过对以上两个问题的解决,使学生认识到解不等式2x-4>0也就是求函数y=2x-4图像上,当y>0时相应的x的取值范围,从而建立数形关系。 最后引导学生归纳总结利用函数图像求不等式解集的步骤,这也是本节课的难点。 (1)把一元一次不等式转化为ax+b>0或ax+b (2)画出一次函数图象; (3)一次函数值大于(或小于)0时相应的自变量的取值范围,实质上是一次函数图像上x轴上方的点(或下方的点)对应的自变量的取值范围。 (三)应用新知 例2的设计是让学生进一步熟悉图像法解不等式的一般步骤,这也就是教材上的方法1,要求学生重点掌握。方法2有一定难度,本节课不再重点讨论。 例2:用画函数图像的方法解不等式5x+4 方法1:原不等式化为3x-6﹤0,画出直线y=3x-6。可以看出,当x 方法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10。可以看出,它们的交点的横坐标为2。当x 总结:以上两种方法其实都是把解不等式转化为比较直线上的点的位置的高低。 从上面的两种解法可以看出,虽然用一次函数图象来解不等式未必简单,但从函数角度看问题,能发现一次函数与一元一次不等式之间的联系,直观的看出怎样用图形来表示不等式的解。这种用函数观点认识问题的方法不是单纯解题,而是加强知识间的融会贯通,用变化和对应的眼光分析问题,对于继续学习数学有着重要作用。 (四)随堂练习 1自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件? (1)y=0;(2)y=-7; (3)y>0;(4)y 设计意图:本题学生很容易想到代值求解,为了突出数与形的结合,要求学生利用图像解决问题。 2利用函数图象解出x: (1)6x-4=3x-2;(2)6x-4 设计意图:(1)与(2)形式上虽然只是等式与不等式的区别,但反应在图像上相应的x的取值范围却不同。 (五)小结与作业 1.归纳反思 2.利用一次函数图像求一元一次不等式解集的步骤 作业布置 必做题:习题14.3第3、4题 选做题:已知y1=-x+3,y2=3x-4,求x取得何值时y1>y2? 自我反思 应用新知中的方法2是初三数学中的重要方法,但考虑到学生的情况本节课没有详细讲。实际教学中可以根据学生的接受情况对本节内容进行适当的拓广延伸,尝试与中招考试衔接。这节课涉及到利用函数图像求解集的问题,采用几何画板动态演示的课堂效果会更好。 《基本不等式》说课稿 3 一、教材分析 (一)教材的地位与作用 本节课是学生在学习了一元一次不等式及其解的概念,解简单的一元一次不等式的基础上,对解一元一次不等式的进一步深入和拓展;另一方面,又为学习不等式的应用、函数等知识奠定了基础。鉴于这种认识,我认为本节课不仅有着广泛的应用,而且起着承上启下的作用。 (二)教学目标 知识与能力目标:掌握解一元一次不等式的一般步骤;会运用解一元一次不等式的基本步骤解一元一次不等式。 过程与方法目标:通过学生的观察、独立思考等过程培养学生归纳概括的能力。 情感与态度目标:通过获得用数学知识解决实际问题的成功体验,增强学生学习的自信心。 (三)教学重点难点 基于教学目标,我认为本节课的重点是:运用解一元一次不等式的一般步骤解一元一次不等式。 由于例2的步骤较多,容易发生错误,是为本节课的难点。 二、教学方法 我认为在教学中,要善于调动学生的学习积极性,关注学生的'学习过程。本节课我采用启发式,讲练结合的教学方法,让学生手脑并用,合作交流,自主探究。 三、教学过程 为了整体把握教材,构建高效课堂,我设计科一下流程: 复习引入—探究新知—巩固练习拓展新知—目标检测—归纳小结—作业布置,总共7个环节。 (一)复习引入 课件出示:解下列不等式:(1)3-3x>2-4x;(2)3+3x≤4x+8。这两道题是上节课学过的知识,我估计学生能够解决。于是我给学生一定时间让他们自行完成,同时请两位学生上台板演。对照学生的解题过程,教师提问:“解这样的不等式的基本步骤是什么?根据学生的回答,教师及时板书:移项、合并同类项、两边同除以未知数前面的系数。(注:遇负数,不等号的方向改变,与方程的不同之处)现在再看以下两道题: 1.合作学习,根据已学过的知识,你能解下列一元一次不等式吗? (1)5x>3(x-2)+2(2)2m-3 2.解一元一次不等式与解一元一次方程的步骤类似。解一元一次不等式的一般步骤和根据如下: 步骤根据 1去分母不等式的基本性质3 2去括号单项式乘以多项式法则 3移项不等式的基本性质2 4合并同类项,得ax>b,或ax 5两边同除以a(或乘1/a)不等式的基本性质3 3.例1.解不等式3(1-x)>2(1-2x) 解:去括号,得3-3x>2-4x 移项,得-3x+4x>2-3 合并同类项,得x>-1 4.例2.解不等式(1+x)/2≤(1+2x)/3+1 解:去分母,得3(1+x)≤2(1+2x)+6 去括号,得3+3x≤2+4x+6 移项,得3x-4x≤2+6-3 合并同类项,得-x≤5 两边同除以-1.得x≥-5 注:1.五个步骤要求当堂背出,同桌之间可以互相核对。 2.要求作业严格按照上述步骤进行。 3、课内练习 解下列不等式,并把解在数轴上表示出来: (1)5x-3 (2)3(1-3x)-2(4-2x)≤0 (3)(2x-1)/4-(1+x)/6≥1 4、小结: 1.解一元一次不等式的基本步骤。 2.不等式的解在数轴上的表示方法。 《一元一次不等式》的教学反思 本节内容是一元一次不等式组的基础。现对本节课从以下几方面进行反思: 一、课堂教学结构反思 本节课通过复习解一元一次不等式以及在数轴上表示解集开始引入新的问题,学生通过对新问题的讨论、交流与研究,明确了方法与注意事项,并为利用一元一次不等式解决实际问题作了铺垫。这样的程序符合学生的认知规律,教学取得了不错的效果。适时地由学生自己合作、交流,归纳出一般性的方法,对于学生从整体上把握知识以及养成总结的习惯是大有帮助的。 二、有效的课堂提问反思 复习旧知识的提问,可以加深对本课知识的理解,又能更好地巩固前面的内容,起到承上启下的作用。提问过程中可以达到师生间的相互交流。教学提问中,比如:不等式的基本性质是什么?不等式的概念是什么?不等式的解是什么?学生在理解解一元一次方程步骤的基础上,类比解一元一次不等式的步骤就有了进一步的认识。由于学生的基础比较差,课堂教学提问中,由易到难,深入浅出,尽可能让学生学会、会学、会做。 三、有效的课堂参与反思 本节课我从复习旧知识,提问,动手操作,合作交流、形成共识的基础上,过渡到一元一次不等式更一般的情况。在课堂活动中经历、感悟知识的生成、发展与变化过程,重在学生参与完成。通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己理清思路、板书过程,锻炼学生语言表达能力和书写能力,激发了学生学习积极性,培养学生的参与意识和合作意识,学生在各个环节中,运用所学的知识解决问题,进而达到知识的理解和掌握,使学生真正参与到知识形成发展过程中来。 本节课较好的方面: 1.本节课能结合学生的实际情况明确学习目标,注意分层教学的开展; 2.课程内容前后呼应,前面练习能够为后面的例题作准备。 3.及时对学生学习的知识进行检查。 4.对过去遗留的问题,如:去括号时出现符号错误,去分母是漏乘,系数花1时分子与分母倒了等等问题,在课堂巡视时,发现问题并及时纠正,使学生在典型错误中吸取教训。 不足方面:课容量少,留给学生自己独立思考,讨论的时间较少。课堂上没有发挥学生的力量,开展“生帮生”的活动。在课堂上没有做到尝试着少说,给学生留些自由发展的空间。设计的教学环节,也没有多思考一些学生的所想所做,真正做好学生前进道路上的引导者。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。 《基本不等式》说课稿 4 我今天说课的题目是《不等式的基本性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。 一、教材分析: 1.教材的地位和作用 本节课的内容是选自人教版义务课程标准实验教科书七年级下第九章第一节第二课时《不等式的基本性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。 2.教学目标的确定 教学目标分为三个层次的目标: ⑴知识目标:主要是理解并掌握不等式的三个基本性质。 ⑵能力目标:培养学生利用类比的思想来探索新知的能力,扩充和完善不等式的性质的能力。 ⑶情感目标:让学生感受到数学学习的猜想与归纳的思维方式,体会类比思想和获得成功的喜悦。 3.教学重点和难点 不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习以及用不等式的性质解不等式。本节课的难点是用不等式的性质化简。 二、教学方法、教学手段的选择: 本节课在性质讲解中我采取探索式教学方法,即采取观察猜测---直观验证---托盘实验---得出性质。使学生主动参与提出问题和探索问题的过程,从而激发学生的学习兴趣,活跃学生的思维。为了突破学生对不等式性质应用的困难,采取了类比操作化抽象为具体的方法来设置教学。整节课采取精讲多练、讲练结合的方法来落实知识点。 三、学法指导: 鉴于七年级的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。鼓励学生一种类型的题多练,并及时引导学生用小结方法,克服思维定势。 例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。 四、(主要环节)教学流程: 1.创设情境,复习引入 等式的基本性质是什么? 学生活动:独立思考,指名回答. 教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式. 请同学们继续观察习题: 观察:用“”或“”填空,并找一找其中的`规律. (1)55+2____3+2,5-2____3-2 (2)–1,-1+2____3+2,-1-3____3-3 (3)6>2,6×5____2×5,6×(-5)____2×(-5) (4)–2(-2)×6____3×6,(-2)×(-6)____3×(-6) 学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误. 五、教法说明 设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备. 不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质. 学生活动:观察思考,猜想出不等式的性质. 教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.” 师生活动:师生共同叙述不等式的性质,同时教师板书. 不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变. 对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样? 学生活动:观察③④题,并将题中的5换成2,-5换成一2,按题的要求再做一遍,并猜想讨论出结论. 六、教法说明 观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?为什么? 师生活动:由学生概括总结不等式的其他性质,同时教师板书. 不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变. 不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变. 师生活动:将不等式-2<3两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论. 学生活动:看课本第124页有关不等式性质的叙述,理解字句并默记. 强调:要特别注意不等式基本性质3. 实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变. 学生活动:思考、同桌讨论. 归纳:只有乘(或除以)负数时不同,此外都类似. (1)如果x-54,那么两边都可得到x9 (2)如果在-78的两边都加上9可得到 (3)如果在5-2的两边都加上a+2可得到 (4)如果在-3-4的两边都乘以7可得到 (5)如果在80的两边都乘以8可得到 师生活动:学生思考出答案,教师订正,并强调不等式性质的应用. 2.尝试反馈,巩固知识 请学生先根据自己的理解,解答下面习题. 例1 利用不等式的性质解下列不等式并用数轴表示解集. (1)x-7>26(2)-4x≥3 学生活动:学生独立思考完成,然后一个(或几个)学生回答结果. 教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确. 七、教法说明 解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力. (四)总结、扩展 本节重点: (1)掌握不等式的三条基本性质,尤其是性质3. (2)能正确应用性质对不等式进行变形. (五)课外思考 对比不等式性质与等式性质的异同点. 八、布置作业 《基本不等式》说课稿 5 一、说教材 我认为要真正的教好一节课,首先就是要对教材熟悉,那么我就先来说一说我对本节课教材的理解。《基本不等式》在人教A版高中数学必修五第三章第四节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。 二、说学情 教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学复杂度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。 三、说教学目标 根据以上对教材的分析以及对学情的把握,结合本节课的知识内容以及课标要求,我制定了如下的三维教学目标: (一)知识与技能 掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。 (二)过程与方法 经历基本不等式的推导与证明过程,提升逻辑推理能力。 (三)情感态度价值观 在猜想论证的过程中,体会数学的严谨性。 四、说教学重难点 并且我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:基本不等式的形式以及推导过程。而作为高中内容,命题的严谨性是必要的,所以本节课的教学难点是:基本不等式的推导以及证明过程。 五、说教法和学法 那么想要很好的呈现以上的想法,就需要教师合理设计教法和学法。根据本节课的内容特点,我认为应该选择讲授法,练习法,学生自主思考探索等教学方法。 六、说教学过程 而教学方法的具象化就是教学过程,基于新课标提出的教学过程是师生积极参与、交往互动、共同发展的过程。我试图通过我的教学过程,打造一个充满生命力的课堂。 (一)新课导入 教学过程的第一步是新课导入环节。 我先PPT出示的是北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽的弦图设计的。 提问:你能在这个图中找到不等关系么? 引出课题。 通过展示会标并提问的形式,一方面可以引发学生的好奇心和求知欲,激发学生的学习兴趣;另一方面直入课题,可以很好的过渡到今天的主题内容:推导基本不等式。 (二)新知探索 接下来是教学中最重要的新知探索环节,1.通过导入的问题,学生思考:通过赵爽弦图推可以发现哪些不等关系呢? 学生小组探究:利用赵爽弦图推导出基本不等式。 之后请学生把证明过程进行板书: (2)“探究”,几何证明。 分析法是从结果入手,由果索因;几何法是由几何中的不等关系,进行证明。此类不等式的证明分析法理解简单,几何法稍难。学生通过两种证明过程,加深基本不等式的理解,还练习了证明方法。 至此本节课的主要教学内容已经完成,学生在我层次性问题的'引导下,一步步通过自己的思考和探索,发现基本不等式,通过不同的方法证明了基本不等式。重点得以突出,难点得以突破。 (三)课堂练习 当然一节课只得出结论还是不够的,作为一节数学课要及时对知识进行应用。所以我设计了如下两道课堂练习: (2)一段长为36m的篱笆围成矩形菜园,问这个矩形的长、宽各为多少时菜园面积最大?最大面积是多少? 这样的问题能够兼顾到本节课的所有主要内容,并且问题具有层次性,能让学生初步感知基本不等式应用中“积定和最小,和定积最大”的规律,为后续基本不等式的应用做好了铺垫,利于学生的思维发展。 (四)小结作业 在课程的最后我会提问:今天有什么收获? 引导学生回顾:基本不等式以及推导证明过程。 本节课的课后作业我设计为开放性问题:思考还有什么方法能够证明基本不等式?可以利用书本资料,也可以上网查阅资料。 这样的作业设置能够有效激发学生思考,不限制学生的思维,真正做到以学生为主体,让学生学会自主学习。 七、说板书设计 我的板书设计遵循简洁明了突出重点部分,以下是我的板书设计: 《基本不等式》说课稿 6 《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法: 本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。 根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标: 知识与技能: 1. 感受生活中存在的不等关系,了解不等式的意义。 2. 掌握不等式的基本性质。 过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。 情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。 教学重难点: 重点:不等式概念及其基本性质 难点:不等式基本性质3 教法与学法: 1. 教学理念: “ 人人学有用的数学” 2. 教学方法:观察法、引导发现法、讨论法. 3. 教学手段:多媒体应用教学 4. 学法指导:尝试,猜想,归纳,总结 根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。下面我将具体的`教学过程阐述一下: 一、复习导入新课 上课开始,我首先带领学生学习本节课的教学目标,让学生明白本节课学习的目标。 1.探索并掌握不等式的基本性质,并运用它对不等式进行变形. 2.理解不等式性质与等式性质的联系与区别. 3.提高观察、比较、归纳的能力,渗透类比的思想方法. 二、探求新知,讲授新课 第一部分:学前练习 1. -7 ≤ -5, 3+4>1+4 5+3≠12-5, x ≥ 8 a+2>a+1, x+3 <6 (1)上述式子有哪些表示数量关系的符号?这些符号表示什么关系? (2)这些符号两侧的代数式可随意交换位置吗? (3)什么叫不等式? 目的:设计该部分是为了让学生上新课之前先回顾一下上节课学习的内容。 第二部分:探究新知: 1.商场A种服装的价格为60元,B种服装的价格为80元 (1)两种服装都涨价10元,哪种服装价格高?涨价15元呢? (2)两种服装都降价5元,哪种服装价格高?降价15元呢? (3)两种服装都打8折出售,哪种服装价格高? 2.已知 4 > 3,填空: 4×(-1)——3 ×(-1) 4×(-5)——3 ×(-5) 目的:设计该部分的目的是为了引出不等式的基本性质做铺垫。 第三部分:不等式的基本性质的探究 1:填空: 60 < 80 60+10 80+10 60-5 80-5 60+a 80+a 性质1,不等式的两边都加上(或减去)同一个整式,不等号的方向不变. 2:填空(1):60 < 80 60 ×0.8 80 ×0.8 填空(2): 4 > 3 4×5 3×5 4÷2 3÷2 性质2,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 3:填空: 4 > 3 4×(-1) 3×(-1) 4×(-5) 3×(-5) 4÷(-2) 3÷(-2) 性质3,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 三、小结不等式的三条基本性质 1. 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; 2. 不等式两边都乘(或除以)同一个正数,不等号的方向不变; 3.不等式两边都乘(或除以)同一个负数,不等号的方向改变 ; 与等式的基本性质有什么联系与区别? 四、典型例题 例1.根据不等式的基本性质,把下列不等式化成x<a或x>a的形式: (1) x-2< 3 (2) 6x< 5x-1 (3) 1/2 x>5 (4) -4x>3 解:(1)根据不等式基本性质1,两边都加上2, 得: x-2+2<3+2 x<5 (2)根据不等式基本性质1,两边都减去5x, 得: 6x-5x<5x-1-5x x<-1 例2.设a>b,用“<”或“>”填空: (1)a-3 b-3 (2) -4a -4b 解:(1) ∵a>b ∴两边都减去3,由不等式基本性质1 得 a-3>b-3 (2) ∵a>b,并且-4<0 ∴两边都乘以-4,由不等式基本性质3 得 -4a<-4b 五、变式训练: 1、已知x<y,用“<”或“>”填空。 (1)x+2 y+2 (不等式的基本性质 ) (2) 3x 3y (不等式的基本性质 ) (3)-x -y (不等式的基本性质 ) (4)x-m y-m (不等式的基本性质 ) 2、若a-b<0,则下列各式中一定成立的是( ) A.a>b B.ab>0 C. D.-a>-b 3、若x是任意实数,则下列不等式中,恒成立的是( ) A.3x>2x B.3x2>2x2 C.3+x>2 D.3+x2>2 六 、小结 七、作业的布置 八、 以上是我对这节课的教学的看法,希望各位专家指正。谢谢! 《基本不等式》说课稿 7 【说教材分析】 1.教材的前后联系及地位作用 本节课是高中新课程必修4第十章第一节第一课时的内容。 本节的内容是继学习等量关系之后,在实际生活中存在的又一新的关系-----不等关系。不等关系在现实世界与日常生活中大量存在,在数学研究和数学应用中与等量关系同样起着重要的作用,它是学习不等式性质及解法的基础,又是构造方程、不等式与函数的基石;因此本节具有重要的奠基作用。 2.课标要求 通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。掌握比较法。 3.教学目标 基于新课标的要求,结合本节内容的地位,我提出教学目标如下: (1)知识与技能: ①通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景; ②掌握作差比较法的应用。 (2)过程与方法: ①以问题方式代替例题,学习如何利用不等式研究及表示不等式; ②通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法。 (3)情感态度与价值观: ①通过解决具体问题,让学生在学习过程中的感受、体验、认识状况及理解程度; ②注重问题情境、实际背景的设置,让学生体会数学在生活中的重要作用,培养严谨的思维习惯。 ③学生通过对问题的探究思考,广泛参与,使学生改变自己的学习方式,提高学习质量。 3教学重点、难点 根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。 教学重点:理解不等式(组)对于刻画不等关系的意义和价值。理解并应用作差比较法。 根据本节课的内容,以及学生的心理特点和认知水平,制定了教学难点 教学难点:用不等式(组)正确表示出不等关系;作差比较法过程中得变形。 【说教学设计】 一、提出问题、引入新课 问题1:在现实世界和日常生活中,同学们发现了哪些数量关系?你能举出一些例子吗? (既有相等关系,又存在着大量的不等关系。如两点之间线段最短,三角形两边之和大于第三边,等等。人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。) 问题2: 在数学中,我们用不等式来表示不等关系。下面我们首先来看如何利用不等式来表示不等关系? 【设计意图】问题1:主要是 通过课前的问题展示,让学生感受不等关系与等量关系一样来源于现实世界和日常生活中;随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。 二、思考交流、形成概念 1)用不等式表示不等关系 引例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是: 引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的'含量应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是--用不等式组来表示 【设计意图】让学生从问题的相同点和不同点中找出列不等关系的方法,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。 三、反馈矫正、巩固提高 . 问题1:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售量就可能相应减少20xx本。若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢? 【设计意图】本题的设计主要是加深学生对不等关系的认识(进一步体现本节的重点)的理解;培养分析问题的能力。在启发诱导的同时,训练了学生观察和概括归纳的能力,同时为下面的例2起铺垫作用,体现认知过程中由简单到复杂,由感性到理性的认知规律。 . 问题2:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。按照生产的要求,600mm的数量不能超过500mm钢管的3倍。()怎样写出满足所有上述不等关系的不等式呢? 【设计意图】本题的设计是为了进一步使学生更加准确的把握本节知识。突破了如何判断用不等式组正确表示不等式这一教学难点;教学时可先请二位同学(最好是学生自愿)分别上台板演,同学们集体纠正,同时给学生一个解题的规范示例。 .教师将教材的例题和习题整和在一起 【设计意图】本题的设计是为了进一步使学生更加准确的把握本节知识。突破了如何用作差比较法比较大小和证明不等式这教学重点和难点; 探索研究: a克糖水中有b克糖(a>b>0),若再添上m克糖(m>0),则糖水就变甜了。你能用今天所学的数学知识来解释生活中"糖水加糖会更甜"的现象? 【设计意图】本题的设计是为了让学生体会数学与生活密切联系,体现数学在生活中的重要作用,激发学习兴趣。 四、总结评估、内化结构 【学生活动】 思考讨论得出结论,教师可作适当补充。 1.本节课学习的主要内容是什么?揭示了什么数学思想? 2.通过这节课的学习,你的表现怎么样?你有哪些收获? 【布置作业】 1、必做题:教材后习题以及A组试题 2、课外拓展练习:教师根据学生的实际情况适当补充。 【设计意图】必做题加深对本节内容的理解,并能进行灵活运用,再一次突出本节课的重点。课外拓展练习供学有余力的学生选做,为学生提供选择和发展的空间,体现了新课标"不同的学生在数学上得到不同的发展"这一基本理念。 【说板书设计】(见课件) 【说教法、学情与学法】 1.说学法 根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。 2.说教法 学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。 本节教材的特点注重展现知识的形成过程,具有很强的探究性,而且学生参加高中新课程的学习有一段时间了,初步养成了探究习惯和一定的合作交流的能力,绝大多数学生能够积极主动参与数学活动;因此本节课主要采用"引导发现、讨论交流"的教学方法。 3.说教用具与学生用具: 投影仪、胶片、三角尺、刻度尺 【说课综述】 本节课是有一定难度的概念课,我从学生实际出发,照顾到学生的最近发展区,在整个教学过程中采用了"引导发现、讨论交流"的方法来进行教学,最大限度的挖掘学生的潜力;同时学生通过"自主学习"有利于培养学生的创新能力和富有个性化学习方式,从而使学生最大限度发现自己的潜能。 以上即是我对《不等式基本原理》的认识与处理。不妥之处,敬请批评指正,谢谢大家! 《基本不等式》说课稿 8 一、说教材。 1教材的地位和作用: 《基本不等式》是人教版高中数学必修五第三章第四节的内容。本节主要内容是基本不等式的证明和简单应用。它是在学完不等式性质,不等式的解法及线性规划等知识的基础上,对不等式的进一步研究,在不等式的证明和求最值的过程中有着广泛的应用。 2教学目标: (1) 知识与技能:学生能写出基本不等式,会应用基本不等式解决相关问题。 (2) 过程与方法:学生通过观察图形,推导、证明等过程,培养观察、分析、归纳、 总结的能力。 (3) 情感态度与价值观:学生领略数学的实际应用价值,感受数学学习的乐趣。 3教学重难点: 重点:理解基本不等式的本质并会解决实际问题。 难点:基本不等式几何意义的理解。 二、说学情。 为了更好地实现教学目标,我将对学生情况进行一下简要分析。对于高一年级的`学生来说,他们对不等式的知识有了一定的了解,但对基本不等式的理解运用能力不足。这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难。这都将成为我组织教学的考虑因素。 三、说教法。 科学合理的教学方法能使教学效果事半功倍,达到教育学的和谐完美与统一。根据本节课的特点并结合新课改的要求,在本节课中,我将采用讲授法、演示法、引导启发法等教学方法。 四、说学法。 教师的教是为了学生更好地学,结合本节内容,我将学法确定为自主探究法、分析归纳 法。充分调动学生的眼、手、脑等多种感官参与学习,既培养了他们的学习兴趣,又使他们感受到了学习的乐趣。 五、说教学过程。 首先,我将利用多媒体战士20xx年国际数学家大会的会标,让同学们边观察边思考:图上有哪些相等或不等关系?通过展示来激发学生的学习兴趣。接下来是新授环节。 我将会标抽象成几何图形,正方形ABCD 中有4个全等的直角三角形,让学生自主探究,比较三角形面积之和与正方形面积的大小,从而让学生自主推导出不等式a 2+b 2>2ab,再通过引导启发,让学生自己将结论补充完整。接下来,我会提问:你们能给出它的证明吗?给两分钟的时间让学生自主探究。然后用讲授法给出基本不等式的常用形式ab≤a+b(a>0,b>0),并给出具体的证明过程,强调等号成立的条件。基本不2 等式的证明是本节课的重点,先通过学生的自主探究,再通过我的讲授,学生可以更快地理解这一知识点。接下来是探究基本不等式的几何意义。先由学生自主思考两分钟的时间,然后通过我的讲授,让学生理解基本不等式的几何意义,最后通过几何画板动态演示,让学生更直观地感受基本不等式的几何意义。这样就突破了基本不等式的几何意义这一难点。接下来是巩固练习环节。 这个环节,我将利用两个例题对刚才所讲的知识进行巩固练习。 例1:证明(1)x +1≥2(x >0) x (2)a +1≥2a (a ≥0) 例2:(1)用篱笆围一个面积为100m的矩形菜园。问矩形长宽各为多少时,所用篱笆最短? (2)一段长为36m的篱笆围成一个矩形菜园,问长宽各为多少时面积最大?第一个例题不是课本例题,它比课本例题简单,这样循序渐进,有利于学生理解不等式的内涵,此处a、b不仅仅是一个字母,而是一个符号,可以是具体数字,也可以是一个多项式。对于这个例题,多数学生会仿照课本上的思路用分析法进行证明。 第二个例题是利用基本不等式求最值进而解决实际问题,体现了基本不等式的应用价值,而且例题包含了公式的正向应用和逆向应用,锻炼了学生的灵活使用能力。 下面是小结环节。我将让学生用两分钟的时间回顾本节课所学习的内容,并自己总结出本节的知识点。这样不但能巩固本节所学知识,而且能培养学生分析、归纳、总结的能力。22 然后是布置作业。为了在课后对所学的知识进行巩固,我将布置课后习题第2题,第4题作为练习题。 《基本不等式》说课稿 9 《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法: 本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。 根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标: 知识与技能: 1. 感受生活中存在的不等关系,了解不等式的意义。 2. 掌握不等式的基本性质。 过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。 情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。 教学重难点: 重点:不等式概念及其基本性质 难点:不等式基本性质3 教法与学法: 1. 教学理念: “ 人人学有用的数学” 2. 教学方法:观察法、引导发现法、讨论法. 3. 教学手段:多媒体应用教学 4. 学法指导:尝试,猜想,归纳,总结 根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。 下面我将具体的教学过程阐述一下: 一、创设情境,导入新课 上课伊始,我将用一个公园买门票如何才划算的例子导入课题。 世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗? (此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式) 紧接着进一步提问:若人数是x时,又当如何买票划算? 二、探求新知,讲授新课 引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。 接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。 (1)a是负数; (2)a是非负数; (3) a与b的和小于5; (4) x与2的`差大于-1; (5) x的4倍不大于7; (6) 的一半不小于3 关键词:非负数,非正数,不大于,不小于,不超过,至少 回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植 难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。 反馈练习:用一个小练习巩固三条性质。 如果a>b,那么 (1) a-3 b-3 (2) 2a 2b (3) -3a -3b 提出疑问,我们讨论性质2,3是好象遗忘了一个数0。 引出让学生归纳,等式与不等式的区别与联系 三、拓展训练 根据不等式基本性质,将下列不等式化为“<”或“>”的形式 (1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x="">3 再次回到开头的门票问题,让学生解出相应的x的取值范围 四、小结 1.新知识 一个数学概念;两种数学思想;三条基本性质 2.与旧知识的联系 等式性质与不等式性质的异同 五、作业的布置 以上是我对这节课的教学的看法,希望各位专家指正。谢谢! “让学生主动参与数学教学的全过程,真正成为学习的主人” 《基本不等式》说课稿 10 一、教材分析 1、教材所处的地位和作用: 不等式基本性质是八年级下册第二章第二节内容。不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。本节课是建立在学生已认识了不等关系基础上来学习的,也是为进一步学习解不等式及应用不等关系解决实际问题的重要依据,因此本节课内容在不等关系这一章占有重要位置。本节课的教学指导思想是从学生实际认知水平及知识结构出发,让学生自主获取知识。 二、教学目标 (1)知识与技能 1、经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。 2、掌握不等式的基本性质,并能初步运用不等式的基本性质把比较简单的不等式转化为“x>a”或“x<a”的形式。(2)过程与方法: 1.经历探索不等式基本性质的过程,体验数学学习探究的方法 2.通过观察、类比、猜想、验证、归纳总结等数学学习活动过程,发展合理的推理和初步论证能力(3)情感态度与价值观: 1.学生在探索过程中感受成功、建立自信,增进学习数学的兴趣。 2.体验在研究过程中创造的.快乐,并学会与人交流合作养成良好的人格品质 3、重点、难点及关键 重点:不等式基本性质的探索及应用难点:不等式的基本性质三的探索及其应用 三、教法学情分析: 1、学生在学习一元一次方程、二元一次方程组和一次函数的基础上,积累了一定的经验,本节课主要采用类比等式的方法进行不等式的探究教学,这样不仅有利于学生掌握不等式的基本性质,而且可以使学生体会知识之间的内在联系,整体上把握知识,发展学生的辩证思维。 2、始终坚持学生为主体,教师为主导的教学方法,通过教师的启发,设问,引导学生自主探索、合作交流,师生充分互动,这样才能将学生推到学习的前沿,才能充分发挥学生的学习主体性和主观能动性。 3、在探索不等式的性质时为了避免简单的“模型化”,主要采用引导学生观察、类比、猜想、验证、总结概括的方法,发展学生分析问题和解决问题及初步论证问题的能力,关注学生知识的形成和学习能力的提高。 学法指导 1、观察猜想 2、类比验证 3、探究合作 4、抽象概括 5、总结归纳 6、数学表示 四、说教学过程 最后我来具体谈谈这一堂课的教学过程: (一)、回顾交流,指导观察 教师提问:同学们还记得等式的性质吗?学生举手回答,交流联想。投影显示:等式的性质 设计意图:通过回顾等式的性质,类比等式的性质,为探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。 (二)、知识探究 1、用“﹥”或“﹤”填空,并总结其中的规律: (1)5>3, 5+2 3+2 , 5-2 3-2 ; (2)–1、>(2) 不等式的性质1不等式的两边加(或减)同一个数(或式子),不等号的方向不变.字母表示为:如果a>b,那么a±c > b±c设计意图:通过一组精心设计的填空题,让学生观察有限个不等式的变化,发现并归纳不等式的性质1,进一步培养学生得抽象概括能力及合情推理能力。让学生用语言概括出结论,培养学生的数学语言表达能力及抽象概括能力。 2、继续探究,接着又出示(3)、(4)题: (3) 6>2, 6×5 2×5 , 6×(-5)2×(-5); (4) -2 当不等式的两边同乘以一个正数时,不等号的方向不变;当不等式的两边同乘以一个负数时,不等号的方向改变。 (1)3a 3b;(2)a-8 b-8(3)-2a -2b(4)2a-5 2b-5(5)-3.5a+1 -3.5b+1设计意图:由浅入深的练习,进一步帮助学生理解不等式的性质,为下面利用不等式性质解不等式作准备。 (五)、例题讲解及运用巩固(多媒体展示)例题:将下列不等式化成x>a或x<a的形式(1)x-5>-1(2)-2x>3类比等式基本性质的应用,师生共同板演完成(注意有意强化在(2)题的结果中不等号的方向为什么会改变?) 2、尝试练习一(学生板演)(要求同例题)(1)x-1>2(2)-x<3 (3)x≤3 3、巩固练习二(要求同例题)小组内交流并订正 (1)x+3<-1 (2)3x>27(3)- 6x>5(4)5x<4x-6(通过练习,进一步巩固性质,突出重点)通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。设计意图:让学生经历运用知识解决问题的过程,给学生获得成功体验的空间,激发学生得积极性,建立学好数学的自信心。 4、抢答提升,强化性质 已知x>y,下列不等式一定成立吗? 《基本不等式》说课稿 11 一、教材分析 1、 教材的地位和作用 不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。本课位于湖南教育出版社义务教育课程标准实验教科书七年级上册第五章第一节的内容,主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”。同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。 2、教学重难点 重点:不等式的概念和不等式的基本性质1。 难点:利用不等式的基本性质1进行简单的变形。 二、教学目标 知识目标: 在了解不等式的意义基础上,掌握不等式的基本性质1。 能力目标: ①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。 ②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题,培养学生的数感,渗透数形结合思想。 情感目标: ①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。 ②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。 通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的'精神。 三、教学方法 1、采用激趣——探究法进行教学,师生互动,共同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。 2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。 3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。 四、教学流程 我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。 (一)创设情境,激发兴趣: 师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。 设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。 学习目标: 1、 理解不等式的基本性质1。 2、 会解简单的不等式。 此时我出示本节课的学习目标和归纳出不等式的概念: 归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。 (二)探究新知、总结规律 在这个环节,我主要设计了以下二个活动来完成教学任务: 活动1:1、你能用“﹤”或“﹥”填空吗? (1)5﹥3 (2)6﹥4 5+2﹥3+2 6+a﹥4+a 5-2﹥3-2 6-a﹥4-a 2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果? (2)小组合作讨论交流,大胆说出自己的“发现”。 本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。 活动2:你能用自己的语言概括不等式的性质吗? 本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1: 不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。 当学生概括出结论后,为了使学生对不等式的基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考: 性质中的“不等号方向不变”的含义是什么? 使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。 在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。 通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。 设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。 (三)针对练习、学习例题 1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。 如果x-5>4,那么两边都 ,可得到x>9 2、学习例题环节我采用了学生单独完成的方法来进行,因为有了前面的基础,学生很容易的就可以完成例题的解题过程,教师只需强调注意的事项即可。 例1、用“>”或“ (1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。 解: 【小结】解此题的理论依据就是根据不等式的基本性质1进行变形。 例2、把下列不等式化为x>a或x (1)x+6>5 (2)3x>2x+2 解: 【归纳】把不等式的某一项变号后移到另一边,称为移项,这与解一元一次方程中的移项相类似。例题完成后,要求学生讲解解题思路,以进一步加深理解。 (四)巩固提高、拓展延伸 在这个环节我呈梯度形式设计了不同层次的练习题,针对不同层次阶段的学生,都要求他们完成符合自身实际的题目,以便获得成功的体验,进一步提高学习兴趣。 1、课本P133练习第1、2题; 2、判断是非: ①若a>b,则a-3>b-3 ( ) ②若m ③若a-8 ④若x>7,则x-4 (五)畅谈收获、分层作业 回顾本节课不等式性质的探索过程和解不等式的方法,谈谈你的心得体会。 1、不等式的概念和基本性质1. 2、简单不等式的变形. 通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。 最后是作业设计: 1、看书P132—P133(补全书上留白,划出重点内容,完成读书笔记); 2、习题5.1A组第1题(1)(2),第3题(1)(2); 3、选作:习题5.1B组第1题。 五、教学评价 本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。 六、教学反思 1、本节课通过学生自主探讨、小组合作得出不等式的概念和性质1. 2、本课设计以问题为载体,探究为主线,培养学生的自主、动手、合作交流能力。 谢谢大家! 《基本不等式》说课稿 12 一、教材 不等式基本性质是八年级下册第一章第二节内容,本节课是建立在学生已认识了不等关系基础上来学习的,也是为进一步学习解不等式及应用不等关系解决实际问题的重要依据,因此本节课内容在不等关系这一章占有重要位置。由此本节重点内容是不等式三条基本性质,难点是不等式第三条基本性质,在不等式两端同时乘以(或除以)同一个负数不等号方向改变学生在这一点应用上很难掌握。 另外,本节课在教材安排上意在通过等式基本性质引入新课教学,在新课教学中用不等式实例进行操作,进而推出不等式基本性质,学生通过观察、质疑、发问易于接受新知,根据新课程标准确定学习目标如下: (一)知识与技能目标 掌握不等式基本性质,能熟练运用不等式性质解决简单的不等式问题问题 (二)过程与方法目标 1. 经历探索不等式基本性质的过程,体验数学学习探究的方法 2.通过观察、实验、猜想、推理等数学学习活动过程,发展合理的推理和初步论证能力 (三)情感态度与价值观目标 1.学生在探索过程中感受成功、建立自信 2.体验在研究过程中创造的快乐,并学会与人交流合作形成良好的人格品质 二、重点、难点 重点:掌握不等式基本性质及熟练应用性质解决实际问题 难点:第三条性质的应用 三、教法 以引导发现、活动参与、交流讨论为主,学生自己举出实际不等式例子,教师根据认识规律引导学生由等式性质向不等式知识的迁移,安排学生用一组数在不等式两端参与四则运算,学生通过与其他学生的交流讨论,总结规律得出不等式基本性质 在这一环节教师一方面不断引导学生积极参与教学过程,为适应学生思维发展水平有序引导学生观察分析,由认识到实践再到认识完成认识上的飞跃,圆满完成教学任务,另一方面,教师根据练习情况设疑引导,重在理解不等式性质应用,展开学生思维。 四、学情 一般说来,这个年龄段的学生开始有比较强烈的自我和自我发展的意识,对于与自己直观相冲突的现象和“挑战性“的任务很感兴趣,要在教学过程中给学生探究问题这样的做数学机会,学生能够在这些活动中 表现自我发展自我从而感到数学学习的重要性及其中的乐趣。 学生在学习本节内容时,可能会在应用第三条性质时遇到困难,尽可能引导学生多练习多总结最终完成学习过程,达到教学目标。 五、教学过程 本节课我安排了四个教学过程: (一)回忆旧知,引出新知 经过以前的学习我们知道在等式的两端同时加上(或减去)同一个整式依然成立,这是等式的`性质那么对于上节课我们所学的不等式又有哪些性质呢?这就是今天我们要共同探讨的问题——不等式基本性质。 在这一环节通过对等式性质的回忆进而导出不等式的基本性质, 不仅对旧知的巩固也激发了学生对新知的兴趣。 (二)自主参与探索,交流讨论总结性质规律 教师安排学生自己举出一个具体不等式,根据认识规律有序引导学生在不等式两端同时加上(或减去)同一个数,学生会发现不等号两端经运算比较大小后不等号方向没有发生改变,由此推出不等式第一条性质。 在引出第二条性质时,教师有意引导学生用正数参与两端的乘法(或除法)的运算,同学会发现不等号方向仍然没改变,这时可能会有学生发问:用负数呢?这就引起了学生的好奇心和探究热情,经学生自己动手实验与其他同学讨论得出用负数不等号方向发生了改变,至此就得到不等式的第二三条性质。 在这一环节教师运用了“自主参与”和“交流讨论”的教学方式,通过引导和质疑,突出重点,化解难点,从而完成教学任务,收到良好教学效果。 (三)应用新知,解决问题 我将上节课没圆满完成的问题再次提出:通过一棵树的树围可计算其生长年龄,某树栽种时树围是5cm ,以后每年树围增长3cm ,问这棵树至少生长多少年才能超过2.4m ? 上节课我们已经列出不等关系 设 至少生长x 年才能超过2.4m 则有不等关系 0.03x 0.05 > 2.4 现我们根据这节课所学将这个问题彻底解决。(将不等式性质应用全过程在板书出来) 再在黑板上列出两个例题 5x 3 < 2 - 2x – 1 > 3 要求学生仿照刚才不等式应用过程将其表示“x < a (x > a) ”形式,并找两名同学板书。在这一环节根据初中学生开始对“有用”数学感兴趣选取第一道例题,学生会感到数学就在身边 在练习过程中教师根据普遍存在的问题加以强调并帮助学生改正,针对个别(较慢)学生再具体教学 (四)引导学生总结全课 在这节课我们知道了不等式三条基本性质,并能熟练应用解决简单的不等式问题 《基本不等式》说课稿 13 一、教材分析 第十一章《一元一次不等式和一元一次不等式组》是在学习了数轴、等式性质、解一元一次方程、一次函数的基础上,从研究不等关系入手,展开对不等式的基本性质、不等式的解集、解一元一次不等式(组)、一元一次不等式与一次函数的研究学习。本课题为第十一章第二节《不等式的基本性质》。它在教材中起着承上启下的作用。关于它的学习以等式的基本性质为基础,它是学生以后顺利学习一元一次不等式和一元一次不等式组的解法的重要理论依据,是学生后继学习的重要基础和必备技能。 二、教学目标 知识目标: 1、经历不等式基本性质的探索过程,初步体会不等式与等式的异同。 2、掌握不等式的基本性质,运用不等式的基本性质将不等式变形。 能力目标: 1、培养学生类比、归纳、猜想、验证的数学研究方法。 2、发展学生的符号表达能力、代数变形能力。 3、培养学生自主探索与合作交流的能力。 情感目标:让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学习的乐趣。 三、教学重点和难点 重点:掌握不等式的基本性质并能正确运用将不等式变形 难点:不等式基本性质3的运用 四、教法分析 活动是影响人发展的决定性因素,学生的学习只有通过自主活动并从中体验、感悟、建构自己的知识经验,培养积极的学习情感,才能得到自身的发展。但学生主动参与学习活动的方向,活动过程的积极化离不开教师的“导”。本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动。在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。 五、学法分析 “教为不教,学为会学”,“授之以鱼”更要“授之以渔”。在教的过程中,关键是教学生的学法,本节课教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。 六、教学过程分析 (一)本节教学将按以下五个流程展开: 回顾思考,引入课题 创设问题情景,探索规律 尝试练习,应用新知 总结反思,获得升华 布置作业,深化巩固 (二)教学过程 1、回顾思考,引入课题 观察下面两个推理,说出等式的基本性质 (1)∵a=b ∴a±3=b±3 a±(x2+2y)=b±(x2+2y) (2)∵a=b ∴3a=3b -a/4=-b/4 提出问题:那么不等式有没有类似的性质呢?引入课题。 [设计意图:“有效的教学一定要从学生已经知道了什么开始”。不等关系与相等关系有着辨证的关系。学生已经在六年级上册学习了等式的基本性质,因此,要类比等式的基本性质进行不等式基本性质的教学。课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。] 2、创设问题情景,探索规律 问题1:在天平两侧的托盘中放有不同质量的砝码。 右低左高说明右边的质量大于左边的质量。往两盘中加入相同质量的`砝码,天平哪边高,哪边低?减去相同质量的砝码呢?(拿一个天平让学生亲手操作,获得直观感受) [设计意图:数学源于生活,问题1的设计是为了从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质] 问题2:在不等式的两边加上或减去相同的数,不等号的方向改变吗? 如不等式7>4,-1 一般学生会得到:不等式的两边都加上(或减去)同一个数,不等号的方向不变。 这时可提出问题:把“数”的范围扩大到整式可以吗? 学生讨论可能得出结论:可以,因为整式的值就是实数。 让学生归纳总结:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(教师板书:不等式的基本性质1) 引导学生说出符号语言: 如果a 如果a>b,那么a+c>b+c,a-c>b-c(教师板书) [设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想 方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法, 让学生在合作交流中完成任务,体会合作学习的乐趣。] 问题3:若不等式两边同乘以或除以同一个数,不等号的方向改变吗? 如不等式2 (结合不等式基本性质1的探索方法,学生可能很快就探索出不等式的基本性质2、3) 让学生归纳总结:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变; 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 (教师板书:不等式的基本性质2,不等式的基本性质3) 引导学生说出符号语言: 如果a>b,c>0,那么ac>bc 如果a0,那么ac 如果a>b,c 如果abc (教师板书) 《基本不等式》说课稿 14 一、教材分析(说教材): 1、教材所处的地位和作用: 本节内容在全书及章节的地位是:《一元一次不等式、一元一次方程、一次函数》是苏科版八下第七章第七节内容。在此之前,学生已学习了一元一次不等式、一元一次方程、一次函数基础上,这为过渡到本节的学习起着铺垫作用。本节内容在初中数学学习阶段中,占据重要的地位,以及为其他学科和今后高中数学学习打下基础。 2、教育教学目标: 根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标: (1)知识目标:认识并理解一元一次不等式、一元一次方程、一次函数的内在联系及在解决问题时的不同作用。 (2)过程与方法通过用一元一次不等式、一元一次方程、一次函数解决问题,培养学生用联系变化的观点看问题的意识及数形结合的解题能力。 (3)情感、态度与价值观 通过对解决实际问题的教学,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。 3、重点,难点以及确定的依据: 本课中一元一次不等式、一元一次方程、一次函数的内在联系是重点,灵活使用一元一次不等式、一元一次方程、一次函数解决实际问题是本课的难点,下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈: 二、教学策略: 教法:据本节课教学内容和八年级学生的年龄、心理特点及目标教学的`要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,让学生的知识形成网状结构,使知识能相互交融,培养学生触类旁通的能力。 学法:建构主义教学构想的核心思想是:通过问题的解决来学习。根据本节课的特点,采用自主探究、合作交流的探究式学习方法。 三、学情分析:(说学法) 1、学生特点分析: 中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。 2、知识障碍上: (1)知识掌握上,学生原有的知识一元一次不等式、一元一次方程、一次函数,许多学生出现知识遗忘,所以应全面系统对学生的自由讨论加以指导,引导学生如何研究一次不等式、一元一次方程、一次函数的内在联系,共同揭示“等与不等”这对矛盾的双方,在一定的条件下是可以转化,从而使学生更深刻地理解等与不等的辨证关系。 (2)学习本节课的知识障碍是一次不等式、一元一次方程、一次函数的内在联系 学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。 3、动机和兴趣上: 明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。 最后我来具体谈一谈这一堂课的教学过程: 四、教学程序及设想: 1、由“弹簧挂物问题”导入 把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。在本问题中使学生感受到一元一次不等式、一元一次方程、一次函数的内在联系。 2、导疑:得出本课新的知识点是:一元一次不等式、一元一次方程、一次函数的内在联系。 3、导研:讲解例题。……我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:引导学生围挠一元一次不等式、一元一次方程、一次函数的内在联系展开从多个角度进行思考。 4、导练:课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。 5、导评:总结结论,强化认识。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。 6、变式延伸,进行重构。重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。 7、板书。 8、布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。 《基本不等式》说课稿 15 一、说教学目标 1、了解一元一次不等式的概念; 2、会解一元一次不等式。 3、通过学习对一元一次不等式的概念及解一元一次不等式的探究过程,体会类比数学思想方法。 4、培养学生理论联系实际的思维能力及总结概括能。 基于对数学新课程标准的理解,数学是研究数量关系和变化规律的数学模型,可以帮助学生从数量关系的角度更准确、清晰地认识、描述和把握现实世界,体会数学思想,发展学生的思维水平。本教材的结构和教学内容分析,结合七年级学生的认知结构和心理特点,基于教学大纲和新课程标准的要求,本章的结构和教学内容分析,结合七年级学生的认知发展水平和心理特点,基于对学情的了解,《一元一次不等式》是人教版必修教材第9章第2课时的教学内容。在此之前,学生们已经学习了一元一次方程这为过渡到本课题的学习起到了铺垫的作用。而本课题的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。 综上所述,我将本节课的教学重点确定:会解一元一次不等式。教学难点:把不等式中的未知数化为1这一步时,应根据不等式的性质确定不等号的方向是否改变; 二、说教法、学法 数学新课程标准指出,数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。数学知识相对比较抽象,学生在学习是觉得很枯燥,接受新知识会比较困难。为了激发学生学习的主动性、积极性我采用了复习导入法、演示法、讲解法、类比法。 三、说学法 根据七年级学生注意力不太集中,又好动的心理特点我采用了合作讨论法和自主探究法、练习法以提高学生自觉学习的习惯。 四、说教学过程 在本节课的教学过程中,我能够根据学生的认知结构和心理特点选择合适的教学方法,激发学生学习的主动性、积极性,将新知识化难为易,提高本节课的教学效果。我主要从以下五个环节进行教学的。 1、回顾旧知,提出目标 首先通过不等式的基本性质和一元一次方程的复习引入课题,体现了数学中常用的类比数学思想,既能激发学生学习的兴趣,同时这种类比思想有利于提高学生的创造性。再让学生通过解1道含有分母的一元一次方程,进而回顾一元一次方程的概念和解一元一次方程的步骤达到温故知新的目的。 2、探究新知 在教学新课的过程中根据教材的重、难点;学生已有知识的实际现状选择合适的`教法和学法并运用多媒体辅助教学以最大限度的提高教学效率。首先我设计了4道很简单的一元一次不等式让学生观察其共同特点从而很顺利的概括出一元一次不等式的概念;再让学生举几个一元一次不等式,从而加深对一元一次不等式概念的理解;再启发学生类比解一元一次方程的步骤探究一元一次不等式的解法和步骤,进一步比较知其联系与区别,有利于提高学生的概括总结能力。 3、巩固练习 通过学生自主合作解2个一元一次不等式,一个不含分母、不含等号,一个含有分母、含有等号。这样由浅入深的设计让学生更容易注意到在数轴上表示解集时若包括分界点画实心点,若不包括分界点画实心点。 4、归纳小结达标检测 设计一个问题(议一议):解不等式移项时应注意什么?系数化为1时应注意什么?在数轴上表示解集时应注意什么?是本节课的知识系统化。 注意:解不等式移项时要变号但不改变不等号的方向;系数化为1时不等式两边同除以或乘负数时不等号的方向要改变;在数轴上表示解集时若包括分界点画实心点,若不包括分界点画空心点。 5、作业布置 让学生把教材第126页必做第1题和选做第2题写在课堂作业本上以进一步巩固本节课的知识。 总之,本节课在教学时我采用的是复习导入法、类比数学思想方法。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。让学生体会类比的数学思想方法的重要性和创新性。从而让他们通过回顾和练习解一元一次方程的过程,借助类比思想探索一元一次不等式的解法,深刻体会温故知新的成就感,进而轻松愉快的获得新知,帮助学生认识自我,建立学习数学的信心。 《基本不等式》说课稿 16 【教学目标】: 1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。 2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。 3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。 【重点难点】: 重点:一元一次不等式在实际问题中的应用。 难点:在实际问题中建立一元一次不等式的数量关系。 关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。 【教学过程】: 创设情境,研究新知 这个周末我们要去四明山旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。 问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱? (从生活中的实际问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解决这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。让学生充分进行讨论交流,在活动中体会不等式的应用。在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式) 观察探讨,实际操作 选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动 问题2: 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费、我们怎样选择商店购物才能获得更大优惠? 分析:这个问题较复杂,从何处入手呢? 甲商店优惠方案的起点为购物款达xxx元后; 乙商店优惠方案的'起点为购物款过xxx元后。 启发提问:我们是否应分情况考虑?可以怎样分情况呢? (1)如果累计购物不超过50元,则在两店购物花费有区别吗? (2)如果累计购物超过50元,则在哪家商店购物花费小?为什么? 关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。 小结:用一元一次不等式知识解决实际问题的基本步骤有哪些? 实际问题从关键语句中找条件符号表达: 1、根据题意设置恰当的未知数 2、用代数式表示各过程量 3、寻找问题中的不等关系列出不等式 解不等式注意不等式基本性质的运用(本环节我设置学生分组合作共同讨论,由学生代表发言,互相补充,最后总结。学生会体会到本节课我们不仅仅是解了如何分析问题中的不等关系列出不等式,也尝试了利用分类的方法考虑问题,同时还学到了一种新的比较两个量大小的方法:求差比较法。体现了新课标提倡的学生主动,师生互动,生生互动的新的总结方式。) 教学设计: 一元一次不等式的实际应用是浙教版八年级上册第五章内容,是在学习了一元一次不等式的性质及其解法、用一元一次方程解决实际问题等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础,具有承上启下的作用;同时通过本节的学习,向学生渗透“求差比较两个量的大小”的方法,和分类考虑问题的探究方式,可以提高学生分析问题、解决问题的能力。 本节课的教学设计从以下几个方面进行设置: 1、教学内容:本节课的教学内容大多以实际生活中的问题情景呈现出来,给学生以亲切感,可以提高学生的学习兴趣,让学生感受到数学来源于生活,学生通过合作、努力解决问题,体会到学习数学的价值。 2、组织形式:本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索、共同研究、解决问题。由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。这节课成功与否,不在于教师的讲解本领,而在于调动、启发学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。 3、学习方式:动手实践、自主探索是学习数学的重要方式,因此本节课改变了过去接受式的学习方式,学生不是等待知识的传递,而是主动的参与到学习活动中,成为学习的主体。 4、评价方式:教师在教学中关注的是学生对待学习的态度是否积极,关注的是学生思考了没有,参与了没有,关注学生能否从数学的角度考虑问题。也就是说:教师关注的是过程,而不是结果。另外,在课堂教学中,给了学生更多的展示自己的机会,并且教师的鼓励与欣赏有助于学生认识自我,建立自信,发挥评价的教育功能。 《基本不等式》说课稿 17 今天我说课的内容是:一元一次不等式与一次函数。它是北师大版八年级下册第一章“一元一次不等式与一元一次不等式组”中的第五节内容。下面,我从教材理解、学情分析、设计思路、教学流程四个方面谈谈自己对这节课的思考和设计。 一、教材理解 一元一次不等式与一次函数是在前面学生学习了一元一次方程、一元一次不等式、一次函数的基础上安排的。本节内容的重点是利用一次函数的图象解一元一次不等式,它既是对一元一次方程、一元一次不等式、一次函数的进一步巩固与深化,又是后续学二次函数等知识的基础和铺垫,起着承前启后的重要作用。同时本节教材承担着“引导学生初步体会不等式、方程、函数之间联系和区别”的章节目标,它是本章中的一个难点,渗透着数形结合的数学思想,反映了“事物是普遍联系”的哲学规律。本节内容的学习,对于启发学生数学思维,开拓学生的数学视野,提高学生的数学能力有着十分重要的意义。 依据课标要求和教材内容,我确定本节的教学目标是 1、通过观察图象,使学生初步掌握利用一次函数图象来解一元一次不等式的方法。 2、通过学生合作探究,初步体会一元一次不等式、一元一次方程、一次函数之间的内在联系。 3、培养学生数形结合的意识和解决实际问题的能力,使学生充分感受数学的价值,进一步激发学习数学的热情。 二、学情分析 我校是一所山区乡镇初中,办公条件相对较差,为了适应课堂教学改革的需求,近期学校在每个教室三面墙体装上黑板,并用竖线分成30小块,每块黑板都是学生课堂交流展示的平台,为学生创造了极大的展示空间。 教室内学生的座位分布以小组为单位,6人课桌相并,相对而坐,好、中、差不同层次学生相互搭配,组成6人学习小组,便于课堂上合作交流,互帮互学,互相促进。经过近段来的'实践引导,学生的积极性大为提高,主动性明显增强,良好的学习习惯正在逐步养成。小组内部及小组之间讨论热烈,学生思维活跃,敢想敢说,课堂氛围浓,教学效果好。 在学习本节内容之前,学生已经能够熟练运用代数方法解出一元一次方程和一元一次不等式;能准确根据函数关系式画出图象,并能从图象中分析出变量之间的关系;能找出简单实际情境中的变量及相互关系。这些已有的知识和经验对于完成本课时目标十分重要,但由于本节内容综合性强,并且比较抽象,再加上学生基础、能力有限,所以学生对本节内容的掌握估计有一定的困难。 三、设计思路 根据教材特点和学生实际,以及数学课程标准中提出的三个方面的教学实施建议: 1、让学生经历数学知识的形成与应用过程; 2、鼓励学生自主探索与合作交流; 3、注重数学知识之间的联系,提高解决问题的能力等要求,同时结合初中生好奇心、求知欲强等特点,为了充分体现学生的主体作用,培养学生自主学习的精神,首先在新课导入时用简明的引言,点明课题,激发学生学习本节知识的兴趣,调动学生参与学习的积极性; 其次在课堂学习中,运用新课程提倡的“自主探究、合作交流”的学习方式,引导学生主动地从事观察、猜测、推理、交流等教学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。为此,本节课的教学,我将采用“提纲导学——交流展示——训练提升——学习评价”四环节主体参与式教学方法。 四、教学流程 本节课的教学流程分为提纲导学、交流展示、训练提升、学习评价四个部分。 1、提纲导学 教师用简练的引言,设置疑问,创设情境,导入新课。然后向学生发放提纲导学活页,其内容包括两个部分:一是学习目标,二是导学习题。出示教学目标的目的是为了让每个学生都明确本节课的学习任务,增强学习的目的性和方向性;导学习题是对教材内容的深度设计和处理,它紧扣课时目标,体现了知识由浅入深的层次性,符合学生的认知规律。同时问题以填空的形式呈现,更加具体,便于学生操作。 学生明确目标后,结合课本20页上方的函数图象,自学完成导学习题。时间预设为8分钟。自学中遇到的疑难问题在小组中合作探究解决,教师深入小组指导自学。 2、交流展示 这个环节是在自学的基础上,让学生充分交流展示个人或小组的自学成果。时间预设为15分钟。具体过程为:每个小组至少两人在黑板上展示导学习题的自学成果,教师要引导学生主动参与,鼓励学生积极参与,保障全班三分之二以上的学生参与展示,力争黑板不留空白,让学生在参与中彰显自我,在展示中提高自我。没有在黑板上展示的同学,也要积极融入展示活动,可以随时上前标出展示中的“错误”,并写出自己的意见。书面展示结束后,教师根据学生的作答情况,有策略地请出多名学生向全班同学讲解自己解题的思路和过程,在讲解中,全体同学参与互动,有疑则问,有问则答,同时从思路、表达等方面对学生进行评价。 前4个问题的设计主要是为了完成“用一次函数图象解一元一次方程和一元一次不等式”的课时目标,它是课时重点,所以,自学时间要充裕,展示活动要充分,交流讲解要全面。第5个问题是本节的教学难点,学生很难独立完成,教师要组织学生互动探究,鼓励学生迎难而上,同时点拨释疑,引导思路,帮助学生自己逐步得出结论,并展示在黑板上。教师强调后,根据学生的学情分层提出要求。 3、训练提升 通过前两个环节的实施,学生已经初步完成了本课时的学习目标,为了巩固学习成果,检测课堂学习效果,所以设计了这个环节。本环节包括练习和讲解两个环节,时间预设为练习10分钟,讲解8分钟。训练的题目为课本“想一想”、“做一做”中的问题。以上问题由学生独立完成,每组抽查两名学生在黑板上分别完成。提前完成的学生由教师检查评价后,做课后作业,同时承担帮助组内学困生完成训练题的任务。待全班学生基本完成后,抽查3名以上学生到黑板上讲解。问题二有多种解题思路,教师要引导学生发散思维,用不同的方法解决问题,体会一次函数、一元一次不等式、一元一次方程之间的联系和作用,为下一课时的学习做好铺垫。 4、学习评价 教师对课堂目标的完成情况以及学生的学习情况、学习状态、参与程度、知识掌握程度进行课堂学习综合评价。这一个环节不是孤立存在的,它贯穿于课堂教学的全过程,教师在每个环节,都要对学生学习活动进行适时评价,对表现积极、学习自主的学生进行表扬,对稍差的学生提出改进的办法,促使他们进一步掌握学习数学的方法,激励全体同学高效率地参与课堂学习,生成知识,提高能力,从而有效地完成课时目标和任务。 《基本不等式》说课稿 18 一、教学内容的分析 1.教材的地位和作用 (1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用; (2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。 (3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。 2.教学的重点和难点 对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面: ①哪类的实际问题需要用一元一次不等式来解决; ②如何将实际问题转化为一元一次不等式并加以解决。 根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。 二、教学目标的确定 根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标: 1.能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。 2.通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。 3.在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。 三、教学方法的选择 1、教学方法 根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。 2、教学手段 教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的关注和理解,激发学生的学习兴趣. 四、教学过程的设计 为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下: 课题引入: 我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明! 但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。 实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司。 这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费. 结合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。 问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢? 预案一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。 预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的`字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。 预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折,10%的差距,100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。 列式: 选甲公司所需费用:(元) 选乙公司所需费用:(元) 结论:580人时选择乙公司能让每位学生的餐费平均算来更低。 问题(2)你能否用以前学过的知识,在不知道具体人数的前提下制定一套方案,当其他学校的初一年级也想在这两家公司之间进行选择时,不用重复第一题的计算过程,只要知道人数就马上能根据你方案的结论作出决策呢? 结合以前的训练,学生很容易想到要通过设未知数的方法进行符号表达,将非常关键而题目中并未给出的学生人数设为未知数。由于本题的具体分析过程仍然是由学生分析讨论完成,可能出现的情况是: 预案一:一部分综合能力较强的同学会根据实际意义直接列出综合算式:或此处教师应该引导学生观察,在化简不等式的过程中单价并未影响结果(利用不等式性质二将其作为公倍数约去),即:题目中没有具体的单价也不会影响本题的决策。 还可以结合小学单位一的思想化简不等式,引导学生体会并不是题目中出现的所有数量都会影响不等关系,有可能引发学生的关于数量关系的深层次思考。 预案二:还有一部分学生会因为生活经验少的关系,综合思考能力弱,无法快速的理清数量关系,列出综合算式,思考受阻,教师应引导学生体会在第一题的算式意义的提示下,如何分别列出表达甲乙公司所需总费用的过程量代数式。然后在通过将之用不等号连接的方式,来表达两笔费用的大小,降低因综合性所引起的思维梯度,在过程中让学生体会“分步建模”的思维的条理性。 具体过程如下:(略) 问题(1)如果你是该企业的高级管理人员,请你设计该企业在购买设备时两种型号有几种不同的组合方案; 问题(2)若按固定产量预算企业每月产生的污水量约为2040吨,为了节约资金,应选择哪种购买方案? 实际情景2的选择除涉及“角色扮演”和“环保”等人文因素的考虑以外,在在结合本节的教学目标上还有如下考虑。 1、本题取材于真实的实际生活问题,情景中的符号和数量关系较多,不等关系在文字语言的叙述中显得比第一题更加隐蔽,需要学生更深化的思考才能列出算式,是在第一个情景的基础上的扩展和深化。 2、在学生的讨论过程中,教师应注重引导学生体会,用图表表示的数字信息比文字表达更便于观察和有序思考,感受“有序表达”在实际中的价值。 3、结合本题每一个的具体问题的分析和解决,学生必须要从表格中分析筛选相关的有用数据,(例如:在第一问设计方案时未用到“处理污水量”和“年消耗费”,在第二问中未用到“价格”和“年消耗费”)这种分析和筛选的思考经历将有助于加强学生对数据关系的理解和运用能力。 结合以前的训练,在思考问题(1)学生很容易想到要通过设A型或B型设备的台数为未知数的方法顺利的进入用符号表达实际含义阶段 例如:(1)设购买污水处理设备A型台,则B型(10–)台,由题意知: 12+10(10–)≤105 在此处,将“限额为105万元”转化为“≤105”是学生要突破的第一关,教师应在次处多展示同学的对“限额为105万元”语言解释,尽可能多的在具有不同经历基础的同学心中将这个抽象过程生活化、自然化。 12+10(10–)≤105 解之得≤2.5 因为在实际情景中往往要根据未知数所代表的具体含义为未知数的加一个取值范围的限定,而这个隐含的限制条件往往是学生中所不容易考虑到的,教师应注意引导学生注意这一问题,例如:本题中的是设备的台数,应用非负整数的限制,所以可取0、1、2,因此有三种购买方案: ①购A型0台,B型10台; ②购A型1台,B型9台; ③购A型2台,B型8台. 此处细节性的思考经历,有助于提高学生在建模过程中更全面的考虑数值的实际意义,促进抽象符号与具体意义在头脑中的融合。 特别的,此处的“0”是学生最容易忽视和丢掉的,教师在此处应重点引导学生思考当“x”时,往往是企业最可能选的方案,因为不同的设备涉及到不同的维护问题,单一品种的设备往往更便于管理,这种思考有助于发散学生的思维,促进其结合实际作更全面的思考。 问题(2)的思维梯度较前几个问题进一步加大,学生必须理解“节约资金”这个目的的达成一定是在“完成任务”的前提下的,要先通过对(1)中所得的三套方案是否能完成任务加以讨论和验证,然后再涉及计算哪个方案费用更低的问题。 在验证三套方案的可行性时,收思维方式的局限,学生往往会选择逐一列举计算的讨论方式,并且由于数量少,很容易得出答案,教师可引导学生思考,如果满足(1)的方案不是三种,而是三十种呢?三百种呢?除了逐一讨论以外还有没有什么更好的方式能帮助我们迅速缩小范围呢?引导学生将所买设备能否完成任务量转化为如下不等关系: (2)同(1)所设购买污水处理设备A型台,则B型(10–)台,240+200(10–)≥2040; 解之得≥1 所以在三种取值中确定的值为1或2 当=1时,购买资金为:12×1+10×9=102(万元) 当=2时,购买资金为:12×2+10×8=104(万元) 因此为了节约资金,应选购A型1台,B型9台。 此处的分析和引导有助于学生体会不等式在有效缩小讨论范围时的实际价值。 通过以上问题的解决,学生对不等式和方程一样都是刻画现实世界数量关系的重要模型有了进一部的认识,并感受到不等式确实是从实际问题中提出,又为解决实际问题提供明确的帮助有效数学工具。 归纳小结,布置作业 本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法,深化对数学思想方法的认识,为后续学习打好基础. |
随便看 |
|
符号大全网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。